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Abstract--A new technique. called the strip distributed transfer function method. is developed
for static and dynamic analysis of two-dimensional elastic bodies that are composed of multiple
rectangular subregions. The method is capable of modeling elastic regions of complex geometry
and arbitrary boundary conditions. delivers highly accurate semi-analytical solutions and saves
tremendous computer storage. In the analysis. a complex clastic region is first divided into a number
of subregions: each subregion is then divided into finite strips. Through introduction of strip
distributed transfer functions. the response of every subregion is presented in a semi-exact and
closed form: the whole region is systematically assembled from the subregions. leading to a dynamic
equilibrium equation. Solution of the equilibrium cquatlOn yields the semi-exact displacements and
stresses of the elastic body. The proposed method is illustrated on a square region and an L-shaped
region. and compared with the finite element method. Copyright (' 1996 Elsevier Science Ltd

I INTRODUCTION

A semi-analytical technique is presented for static and dynamic analysis of two-dimensional,
linear elasticity problems in regions that are composed of multiple rectangular subregions.
The technique, called the strip distributed transfer function method (SDTFM), is capable
of treating complex geometry and general boundary conditions, provides highly accurate
solutions, and greatly reduces data storage in computation.

Elasticity problems are often studied by numerical methods because exact solutions
are only available for very few simple examples. As a powerful numerical tool, the finite
element method (FEM) is widely used in elasticity problems (Zienkwicz and Tailor, 1989).
One obvious advantage of FEM is its flexibility in modeling elastic bodies of complicated
geometry, different material properties, and arbitrary boundary conditions. However, this
flexibility of FEM is at the cost of large computer storage and CPU time, and sometimes
is devalued by the need for real-time computations. as in the case of active control of
elastic systems. Additionally, FEM may lose accuracy in predicting high-gradient stress
distributions, and high-frequency dynamic response of elastic bodies.

The finite strip method is another numerical method that has been applied to elasticity
problems (Cheung. 1976). In this method. an elastic region is divided into a number
of strips; the strip displacements in the stnp lateral and longitudinal coordinates are
approximated by polynomials, and series of continuous functions, respectively. It has been
shown that the finite strip method requires much less computer memory. Nonetheless, the
finite strip method is limited to certain regular shapes, and requires increased computer
memory to deal with concentrated loads. pointwise constraints, and abrupt changes in
geometric and material properties.

The are other numerical methods, usually of Ritz or Galerkin type. These methods
present solutions by series of continuous functions that satisfy prescribed boundary
conditions. The selection of these admissible comparison functions is done on a problem­
by-problem basis. and is difficult even for some regions of simple geometry. Also, high
accuracy of series solutions relies on a large number of functions in the series. These features
prevent the application of series solution methods from extending to general elastic regions.
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The current investigation is motivated by the desire to have a technique which combines
the flexibility of FEM in treating complex geometry, and the closed form and high accuracy
of analytical solutions. The flexibility of FEM lies in that the element displacement functions
are interpolated in nodal parameters, which are the displacements at the selected points on
the element boundaries. The number of terms in the element interpolation functions is
identical to that of nodal parameters. In this way, a complex shape can be conveniently
assembled from those finite elements via imposing continuity and equilibrium conditions
on the element functions. Extending the assembly concept of FEM, if for some basic elastic
regions, one can find closed-form, analytical or semi-analytical solutions that are expressible
by "nodal parameters", then using these regions as "super elements", one can construct
highly accurate and memory-saving solutions for regions of complex shapes.

The SDTFM proposed in this work is based on the above idea. This method is an
extension of the distributed transfer function method for one-dimensional distributed
parameter systems (Yang, 1989, 1992, and 1994; Yang and Tan, 1992). In the analysis, a
rectangular subregion is divided into finite strips. The strip displacements are interpolated
in the nodal line displacements, which are the unknown displacement functions defined on
several longitudinal lines of the strips. Unlike the finite strip method and the existing series
solution methods, SDTFM does not utilize series expansion of particular admissible!
comparison functions to determine the nodal line displacements. Instead, it expresses the
nodal line displacements by the so-called strip distributed transfer functions, which are
defined in an exact and closed state-space form. The transfer function formulation allows
explicit representation of the response of the subregion by the displacements at the selected
boundary points of the subregion. As such, assembly of subregions can be done similarly
as in FEM, which eventually leads to a global dynamic equilibrium equation. Solution of
the global equation gives accurate prediction of static and dynamic response (displacements,
strains and stresses) for many complex 2-D elastic regions.

The remainder of this paper is arranged as follows. Rectangular elastic regions are
analyzed in Section 2, where the strips and nodal line displacements are defined, and strip
distributed transfer functions are introduced. Assembly of multiple rectangular subregions
is studied in Section 3. Three models of strip displacement interpolation are derived in
Section 4. The proposed method is illustrated on a square region and an L-shaped region
in Section 5. where the numerical results obtained by SDTFM and FEM are compared.
The advantages of the proposed method are further discussed in Section 6.

2. ANALYSIS OF RECTANGULAR ELASTIC REGIOJ\iS

The 2-D elasticity problem in a region Q is described by the Hamilton's principal

f'{~6 i (r/.1
T [A] IC;i ~phfU)·TfU() dQ-J~ f6u 1T In dQ~ r f6u1T It i. dr}dt = 0.., l . J l 'J l! l J l J l J l J l a J

.. 0.... n n ",1"

(I)

where {uland {c;} are the displacement and strain vectors of the form

[u] =t}· [1:] ={~:
CI' ru aLT-+ .
()' i'y ("Ix

(2)

{U] = r {u} lit. {6u} is the variation of {u}. {f} is the vector of body forces. p is mass per
unit volume. h is the thickness of the elastic region. {to} are the external tractions vector.
and r a is the part of the boundary of Q on which external tractions are prescribed. For
anisotropic elastic materiaL the constitutive matrix is given by
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Fig. 1. A rectangular region divided into strips.
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where c" are the elastic constants.
In this section, rectangular regions are analyzed. Assembly of rectangular subregions

will be addressed in Section 3. In analysis of a rectangular region, the proposed method
(SDTFM) takes three steps: (i) it divides the region into a number of rectangular strips,
and interpolates the displacements of each strip in nodal line displacement parameters; (ii)
it assembles the region from the strips, yielding a matrix dynamic equation governing the
nodal line displacements: and (iii) it obtains exact and closed-form solution for the nodal
line displacements in terms of strip distributed transfer functions, leading to semi-analytical
solutions for various static and dynamic problems of the 2-D region. These steps are
detailed in the following three subsections.

2.1. Definition of strips and interpolation of strip displacements
In Fig. 1 a rectangular region of length a and width b is divided into NS rectangular

strips by NS + I lines, which are called nodal lines. The two ends of each nodal line are
called nodes. The jth strip is defined by the jth and (j+ I)th nodal lines and four nodes: see
Fig. 2(a), where bl is the strip width, and 0\'.1' is a local coordinate system with the origin
located at the middle of the strip bottom. In addition, internal nodal lines may be introduced
within a strip: see Fig. 2(b).

Along the jth nodal line. denote the displacement functions u and l' by U i and 1'1' and
the derivatives ?u. cy and hJr by U,i and 1',/. These parameters. which are functions of the

t jth strip / U+l)th nodal line

Nodes :=:] bi !y.: 1=== Nodes
(a)

t 0 "- jth nodal line

jth strip

Nodes :::::::F - - - -~ -- - -- -- - j;:: Nodes (b)

" Internal nodal line

Fig. 2. The jth strip without or with an internal nodal line.
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spatial coordinate x and time t, are called nodal line displacements. Let the vector t/Jj(x, t)
consist of some or all of the above-defined displacement parameters of the jth nodal line.
For example, t/Ji(x, t) can be {ui(x, t) vlc, t) V or {ulc, t) vi(x, t) u\;Cx, t) L\,(X, t)]T; see
Section 4. Similarly. a vector i)x, t) of the displacement parameters on some internal nodal
lines of the strip can be defined.

Define the nodal line displacement vector of the jth strip by

The displacements of the jth strip are interpolated in the nodal line displacements by

{
U(x. tl} [[N,,( r)]][u(x.t)} = = [N(rl] [U,(\,tl] = . {U/x.t))rex. t) [N,(y)]

(4)

(5)

where [N lr)] is the matrix of shape functions. To guarantee convergence, the shape functions
must be able to describe a state of constant strain in the y-direction, and to assure Co­

continuity of the displacements across the mutual boundaries (nodal lines) of the strips.
Examples of shape functions are given in Section 4.

2.2. Dynamic equation of nodal line displacements
Substituting (5) into (2) gives

where

(6)

[

[0]

[B"o] =:1' [1',]
. [N

u
]

[

[Nul ]
[Bill] = [0]

[N,]

(7)

By (5) and (6). the Hamilton's principal (I) becomes

where {U;} = (~{UI]Fx. [UJ = c[U/}Ft, and

(8)

~I,

[k!ld = \[BIII]T[A][BIII]dy.
."

rh
,

[mil = I, ph[N]T[N] dy
•°

:q;,) = rh

, [N]T {f} dr.
Jo

'h

IS-) -j'[N]T1T- 1 d'
l iJ -. l r,f ).

."

Here [kiJoJ. [k~ll] and [kll I] are called the strip stiffness matrices, [ml] the strip mass matrix,
[q;,} the strip body force vector, and {S I} the generalized nodal force vector.

Now introduce the global nodal line displacement vector



Solution of elasticity problems

where {!/t/} and {i.i} have been given in (4). In terms of [<1>u] , (8) reduces to

~(I.'u }

-[<i>u}T[M]{<i>u:)dx-J ... [()<1>u]T[QuJdx-~b<1>,,]T[S}I\~±o)u dt
(l "1I
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(9)

(10)

where [Koo], [Kol ] and [K II ] are the global stiffness matrices, [M] the global mass matrix,
[QJ the global body force vector, and {S} the global generalized nodal force vector. These
matrixes and vectors are assembled from those in (8) the same way as in the finite element
analysis: i.e ..

NS

[<1>;,]T[Klj]~<1>;,; I [UJI[klll][L;;. [b<1>,,]T[QuJ
! I

Variation oft <1>,,} in (l0) and integral by part lead to

'\;5

I [bVJT [q;,}, etc.
I ~ I

( II a)

(II b)

where [K'eJ] = [K II ], [Kill] = [KOI]-[KollT. [KiO'l = [Koo], and sgn(x) = I (-I) for x>O
( >0).

When [b<1>,,] is arbitrary, the dynamic equation by (11 a) is:

[Q,,}. (12)

However. {beD,,} is not arbitrary if a nodal line displacement is known or specified. For
instance. if thejth nodal line is clamped. i.e .. ul'. t) = I)X. t) = 0 for XE (-0.5a, 0.5a), bUI

and bei can only be zero. In this case, the dynamic equation is derived by eliminating those
known nodal line displacements from {<1>u}.

Let {<1>uJ have N unknown nodal line displacements, denoted by the vector {cjJ}. and
lV known nodal line displacements, denoted by the vector [¢}. Rearranging the elements
of f -1.,1 and f J.l in feD) one obtainsI 'P J I 'P J ("J •

( 13)

where [T] = [T j Te] is a row transformation matrix with the sub-matrices [Til and [Tel of
proper dimensions. For example, if {eD,,} = {cjJ I ¢2 rI>c ¢I} T. then
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Plugging (13) into (II), letting {bcp} = 0, and conducting arbitrary variation of {4>}, one
obtains the dynamic equation governing the unknown nodal line displacements

(14)

and the boundary conditions

(15)

where

[M] = [TdT[M][T1J; [Klil] = [TiF[KIiI][T I ], i = 0, 1,2

[Q~,] = [TI]T[Q,,}-[T1JT([M]~~ _[KICIJ~~+ ±[KIt)] :~'.)[T2]{q;}
?t- ex--, ~ I) ex'

2.3. Solution by strip distributed transfer functions
The dynamic eqn (14) is solved in the Laplace transform domain by a state-space

technique. Laplace transform of (14) with respect to time gives

where the carat denotes Laplace transformation, s is the complex Laplace transform
parameter, and

[AI] = [KI21]-I[KIII], [Ac(.~)] = [KICI ] 1([K11)1]+SC[M])

[Qc/(x,s)} = _[KIC)]-I({Q<p(X,s)}+[M](s{4>}+{~})I,~I))'

The boundary conditions for (16) are derived from (15). Let {Sq,} be the Laplace
transform of {Sq,}. Write

rS- 11 -
l ¢ f y - ± OSo - (17)

Here N is the number of unknown nodal line displacements, rt (s) and r i (s) represent the
specified forces at the right and left nodes (x = ±0.5a) of the nodal line on which thejth
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unknown nodal line displacement is defined, respectively, and 7[, is the kth row of the
matrix operator [n\~]. By (15), there are two pairs of boundary conditions for each nodal
line displacement; i.e.,

forj = L 2.... , N. where x7 (.I) are the prescribed displacements at the nodes.
Equations (16) and (18) are rewritten in a state equation form

(

-:;- [I/(X. s)} = [F(s)] ['1(x, .I); +~ p(x. .I)]
ex

(18a)

(18b)

(19a)

[MhC~)] [11( - 0.5a. 1'): + [Nh(s)] : '1(0.5a, .I))

where the state variable vector is defined by

(I')} (19b)

I I _ {A.
l'1f - 'VI (20)

the state-space matrix [F(s)] is composed of the elements of [AI] and [A2(s)] defined in (16),
the boundary matrices [Mh(s)] and [Nh(s)] consist of the coefficients of 7[/ given in (18), the
external force vector [p(x, .I)} contains the elements of [Qe'(x, s)}. and the boundary
disturbance vector [i'h(S)} has the entries like xl (I') and T/~ (1'). For systematic construction
of these matrices and vectors. refer to Yang and Tan (1992).

The solution to the state-space equations (19) is obtained in exact and closed form
(Yang and Tan, 1992)

I'll, Sa

['1(x.s)) = I [G(x,~,s)][p(~ ..I)}d~+[H(x.s)][i'h(S)}
It- n, s"

where the 2N by 2N matrix Green's functions

(21 )

. " . _{[H(X'S)][Mh(.I.)]cW.("ldl,a+~.I,
[G(\, ,"' ,I)] - .

- [H(x, S)][Nh(S)]e[~{"J(O'a-cl. ~ >.\
(22a)

(22b)

The [G(x.~. 1')] and [H(x, s)] are called the strip distributed transfer functions of the
rectangular region. By (22a), the evaluation of the integral in (21) depends on the evaluation
of the integral Sexp[ - [F(s)]~: {p(~, s)} d~, which. in most cases, can be obtained by exact
and closed-form quadrature without numerical integration (Yang, 1994). The state variable
vector. once determined. directly gives the strains and stresses without the need to differ­
entiate the nodal line displacement functions.

The transfer function formulation provides a systematic and efficient way to predict
the static and dynamic response of the rectangular region under various loads and boundary
conditions. The static displacements and strains are given by (21) with s = 0 :
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(I1(X,O)} = ro"" [G(x,~,O)]{p(~,O)}d~+lH(x,O)]{~'h(O)}.
.., -- o. Sa

(23)

For the region under a harmonic excitation offrequency w, its dynamic response is obtained
by setting s = iw, i = J -I, in (21).

For free vibration of the elastic region, the natural frequencies Wk are the roots of the
transcendental characteristic equation

where i = ~ - I. The eigenfunction (mode shape) corresponding to Uh is obtained by first
determining

11 = eFIi"A1\ljJ. XE (-0.5a, 0.5a)

where the non-zero vector ljJ E C cS satisfies

and then, substituting ¢,(x. iwd of [11] back into (5).

3. ASSEMBLY OF MULTIPLE RECTANGULAR SLBREGIONS

(25)

(26)

The 2-D elastic region ° in consideration is composed of NR rectangular subregions
0" j = I, 2, ... , NR. Two examples are shown in Figs (3a) and 3(b) where aU-shaped
region is viewed as an assemblage of three rectangular subregions OJ (ABCIJA), O2

(CDHIC) and 0, (DEFGHD), and a more complicated region is decomposed into seven
rectangular subregions. While decomposition of a region may take different ways to avoid
difficulties in assembly of subregions. nodal lines are defined such that the nodes (ends) of
any nodal line are never connected to the interior points of other nodal lines. This means
that a1l nodal lines should be aligned in one direction.

For each subregion, there are two types of nodes: (a) inter-connecting points where
the neighboring subregions are inter-connected, and (b) boundary nodes where boundary
conditions are prescribed: see Fig. 3(a) for instance. The region °is assembled from the
subregions by imposing displacement continuity and force balance at those nodes where
the subregions are inter-connected. In the sequeL the superscript i refers to the ith subregion
0;.

Consider subregion 0,. Let the length of the strips be a, so that the nodal line dis­
placements are defined in the domain - 0.5a; :::; x :::; 0.5a,. Assume that there are N:

------i

.-- °1------1 C D f- 03--<1

°2

A

J

B

(a)

E

H

F

G

(b)

Fig. 3. Two dimensional regions composed of rectangular subregions: (a) a U-shaped region. 0 ..
inter-connecting nodes.•-boundary nodes: (b) a region composed of seven subregions.
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unknown displacements at the inter-connecting nodes, which are denoted by the vector
~ ¢;(s)} E C;", and N h boundary conditions specified at the boundary nodes, where the
boundary disturbances are represented by the vector {~'h(S)} E Cr. The state variable vector
of the subregion can be expressed in terms of the displacements at the inter-connecting
nodes by viewing {¢;(s)} as the boundary disturbances; namely by (21),

where

and

[I)'(X, .1')] = (1);'h(X, s)} + [H¢(x, s)l{ ¢;(s)}.

r-().):I

~17;'h(.\"\)} = I . [G'(x,~,s)][p'(~,s)} d~+[Hh(x,s)][~'h(s):
~ 0.)(/

[H:/,(x,s) Hh(.\,s)] = [H'(x,s)].

(27)

With the above representation, displacement continuity at the inter-connecting nodes is
guaranteed.

Let {S;(s)} E C" be the vector of the internal forces applied at the inter-connecting
nodes by 0i' For the convenience in derivation, the locations of these nodes are symbolically
expressed by x" which is either - O.Sa, or O.Sai . The internal forces at the inter-connecting
nodes are given by

(28)

where the matrix [D;.], which describes a stress-displacement relationship, is derivable from
the operator [D",] in (15). Thus, from (27) and (28)

with

rS'()1 __ [K,(.)]rJ:i(·.)i.~1 i()1I , .I' J - ,S l 'f', .1 J ' I q, .I' J

[K;(s)] = -[D;][H¢(x"s)], [q:(s)} = [D;][I);'h(.\,' s)}.

(29)

where {q;(s)] represents the transmitted internal forces at the inter-connecting nodes due
to the external loads and boundary disturbances.

Now introduce the global nodal displacement vector l¢, (s)} which is a collection of
all the independent unknown displacements in {¢:(s)}, i = I, 2, ... , NR. At the inter­
connecting nodes, there arc internal forces [S;(s)] exerted by the subregions, and the external
lumped forces, which are denoted by the global vector [q,(s)]. Force balance at those nodes
leads to the global dynamic equilibrium equation

[K,(s)] l¢, (s)} = :q(s)} == [q,(s)] + [q,(s)) (30)

where the matrix [K,(s)] and the vectoriq,(s)] are assembled from [K;.(s)] and (q;.(s)} of
the subregions in the same way as in the finite element analysis. The [K,.(s)] and {q(s)} arc
the global stiffness matrix and nodal force vector, respectively.

Upon its formation, the global dynamic equilibrium equation is ready to be solved
since the boundary conditions of the region 0 have been introduced at the subregion level.
The global stiffness matrix is symmetric for .I' = 0, and .I' = iw where i = ,i- I. Thus the
linear algebra eqn (30) can be easily solved by standard methods. Substitution of the
solution of (30) into (27) and (5) gives the semi-analytical prediction of the static and
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dynamic response of the 2-D region. The natural frequencies 0h of the elastic body can be
determined from det[K,(iwk)] = O.

4. STRIP DISPLACEMENT INTERPOLATION

Three types of shape functions are introduced for the strip displacement interpolation
discussed in Section 2.1.

Linear displacement interpolation model (LA£). The nodal line displacement vector of
the jth strip is chosen as

(31 )

where

and no internal nodal line displacements are used. The shape functions are given by

[Nutr)] = [I-~ 0 ~ 0], [N,(Y)] = [0 I-~ 0 ~]

(32)

(33)

where ~ = Ylb, with b, being the width of the strip.
Quadratic displacement interpolation model (QAt). In this model, an internal nodal line

is introduced at the middle of a strip. The nodal line displacement vector of the jth strip is
given by (4), with {1jJ;} and {1jJ,+d given in (32), and V,} defined by

The corresponding shape functions are

[N"tr)]=[1-3~+2( 0 4~-4~c 0 2(-~ 0]

[N,(y)]=[O 1-3~+2( 0 4~-4( 0 2~c-n

(34)

(35)

Cubic displacement interpolation model (CM). The nodal line displacement vector of
the jth strip is given by (31) with

where U r, and r'i are the derivatives cU!(~y and hi?)" on thejth nodal line. No internal nodal
line parameters are used in this model. The shape functions are

[N"tr)] = [1~3(+2~' 0 bi(~-2(+~') 0 3~c_2~' 0 b;(-(+C) 0]

[N,(y)] = [0 1-3(+2¢' 0 b/(~-2~c+¢,) 0 3(-2¢' 0 bi(-~c+C)]. (37)

For each model. the stiffness and mass matrices defined in (8) are given in the Appendix.
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Fig. 4. A square region under a uniformly distributed load.
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Fig. 5. An L-shaped region under uniformly distributed loads.

5. NUMERICAL RESULTS

The strip distributed transfer function method is illustrated on a square region (Fig.
4), and an L-shaped region (Fig. 5). Static displacements and stresses are predicted by the
proposed method using the three models (LM, QM, and CM) developed in Section 4, and
the results obtained are compared with those by the finite element method. Also, the natural
frequencies of the L-shaped region in free vibration are calculated. The finite element
simulation is done using a 4-node isoparametric element and an 8-node isoparametric
element from the software COSMOS/M. While the proposed SDTFM is valid for aniso­
tropic elasticity, for demonstrative purposes, only isotropic elastic material in the state of
plane stress is considered in the numerical examples. The displacement and stress results
are non-dimensionized by

E E ax (JI' In
(38)u = -,U. r = --'-1' tt\ = -- ttl f.\l

I -w I - tiC • p p p

where p is a load parameter. E is Young's modulus, and fJ. is Poisson's ratio, which is 0.3
in all the calculations.
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Table I. Displacement and stresses at point B of the square (NS- -number of strips)

SDTFM LM

Method

FEM

QM

eM

4-node
element

8-node
element

Mesh 1" Ct, 6,

NS= 1 0.6151 0.3499 0.5176
2 0.6783 0.4999 0.7810
4 0.7293 0.7617 0.9918
8 0.7546 0.8640 1.0451-_..._ ...._-_ ..._-

NS= I 0.7027 0.6228 1.0282
2 0.7470 0.8744 1.1186
4 0.7635 0.8965 1.0565
8 0.7665 0.8785 1.0153

- -- --- -- - ---_.--_ ...---

NS = I 07513 0.9029 1.1678
2 07636 0.9017 1.0510
4 0.7664 0.8748 1.0047
8 0.7672 0.8740 1.000]

-- -----

2x2 0.7554 0.1483 09440
4x4 07309 0.7367 0.8611
8x8 0.7563 08398 0.9688

16 x 16 07639 08648 09928
----_ ..-.---- --_.._-

2x2 0_6954 0.7747 1.3920
4x4 0.7548 0.8722 0.9788
8x8 07643 0.8623 1.0020

16 x 16 0.7666 08708 1.0020
50 x 50 07675 0.8740 1.0000

o
--

o+
+

0 _ --fS'
9- --

••• -'••••••• 4.1_ .
... --...,----

Stress distribution on A-B

-4

FEM (8-node element): 50x50 mesh

FEM (4-node element): 2x2 mesh

FEM (8-node element): 2x2 mesh

o SDTFM (LM): 2 strips

+ SDTFM (QM); 2 strips

* SDTFM (eM): 2 strips

-5'-'------'---__-'- ---1... ---1... --'-'

o 0.1 0.2 0.3 0.4 0.5

X1a
Fig. 6. Distribution of iT, on A-B of the square region: SDTFM-- 2 strips; FEM-2 x 2 mesh.
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--0---- 0 ••••• 0
- - - 0 - - -0- - - .......

,/" 0 ...............
+ ,.,0 .
0\..- ... ::. •••••......~. "c5 / /

"
...............

o

-1 ~

0

~-- -2 Stress distribution on A-B
x

b
FEM (8-node element): SOxSO mesh

+ FEM (4-node element): 4x4 mesh

-3 FEM (8-node element): 4x4 mesh

*
0 SDTFM.(LM): 4 strips

+ SDTFM (QM): 4 strips

-4
* SDTFM (eM): 4 strips

o 0.1 0.2 0.3 0.4 0.5

X/a
Fig. 7. Distribution of ij, on A-B of the square region: SDTFM--4 strips: FEM- 4 x 4 mesh.

Example 1: sIalic stresses olsquare region
The square of side length a in Fig. 4 is clamped on both the vertical sides, and is

subjected to a uniform load of magnitude p on the top side. In SDTFM, the square is
divided into NS identical horizontal strips of width hj = aINS, whose longitudinal direction
is in the X-direction. In the finite element analysis, the square is divided into an N x N mesh
of identical square elements.

Table I shows the displacement l~ and normal stresses a, and a, at point B on the top
side of the square. In the FEM category, the words 'A-node element" and '"8-node element"
represent 4-node and 8-node isoparametric elements, respectively. All the three SDTFM
models give accurate and fast-converging results. The LM with 8 strips is comparable to
the 4-node element with an 8 x 8 mesh. The QM of 8 strips is more accurate than the 4­
node element with a 16 x 16 mesh. and as accurate as the 8-node element with an 8 x 8
mesh. Higher accuracy is gained as the interpolation order increases: the CM with 8 strips
is as good as the 8-node finite element with a 50 x 50 mesh (i.e., 2,500 elements).

The distributions of the stress a, along lines A-B and B-C are given in Figs 6-8 and
Figs 9-1 L respectively, for different meshes. Since the exact solution is not available for
this problem, the prediction by the 8-node finite element with a 50 x 50 mesh is used as a
reference solution. and plotted in each figure. It is apparent that the three SDTFM models
yield much more accurate predictions than the FEM models, when the number NS of strips
is the same as the N of the finite element mesh N x N. The results obtained by the cubic
SDTFM (eM) with 8 strips are almost the same as the reference solution. In addition, even
with 2 strips the CM is more accurate than the 8-node element with an 8 x 8 mesh. Here
the strip width is 4 times of the side length of the finite elements.

Notice that at point A of the square, the stress a, becomes singular. An 8 x 8 mesh is
too coarse for the finite element models to describe the high gradient of the stress and much
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more elements are needed. On the other hand, with just 8 strips, the CM of SDTFM gives
a pretty good profile of the stress distribution near the point; see Fig. 8.

To check the consistence of the proposed method. ft, on line A-B is re-calculated using
8 vertical strips. and plotted against that predicted by 8 horizontal strips: see Fig. 8. The
stress estimated by the vertical strips is slightly different from that by the horizontal strips
at certain points where the curvature of the stress distribution is relatively large. The
difference, while not significant. is obviously due to the discretization of the strip dis­
placements in the direction of A-B. However, with the exact nodal line displacements
determined at the nodes on line A-B, the vertical strips still faithfully present the singularity
of the stress at point A. This insensitivity of the proposed method to strip orientation is
also seen in Example 2 (Figs 12 and 16).

Example 2: static stresses of' L-shaped region
The L-shaped region in Fig. 5 is clamped at the bottom, and subjected to a uniform

in-plane load of magnitude p on its two right sides. In the transfer function synthesis. the
region is divided into two subregions: subregion 1. 0 1 = ICDEFGHI; and subregion 2,
Oc = ABCIA. The subregions are divided into identical vertical strips. with their longi­
tudinal direction in the Y-direction. Two subregions are inter-connected at the nodes on
line I-e. Since OJ is twice as large as O2• if O2 has NS strips, OJ has 2NS strips. and the
whole region has total 2NS+ NS strips. The finite element meshing follows a similar
pattern: Oc has N x N identical square elements. 0 1 has 2N x N elements, and the whole
region has 2N x N + N x N elements.

The distributions of the stresses ft, and ft, on different lines of the region are plotted
in Figs 12-16. where the strip number 2NS+ N S and the finite element mesh 2N x N + N x N
bear the same meaning as explained in the previous paragraph. As a reference, the solution
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by the 8-node isoparametric element with a mesh of 60 x 30 + 30 x 30 (total 2,700 elements)
is provided in each figure. Again the high accuracy and fast convergence of the SDTFM
solutions are seen, especially in the prediction of stress distributions of high gradient.

Example 3: naturalfrequencies alL-shaped region
The same L-shaped region in Example 2 is in free vibration. Shown in Table 2 are the

first 10 natural frequencies of the continuum, computed by the quadratic SDTFM (QM),
and the 8-node finite element. The natural frequencies Uh of the elastic region are non­
dimensionized by

(39)

The prediction by the finite element method with a 70 x 35 + 35 x 35 mesh (total 3,675
elements) serves as a reference solution. For each case of FEM or SDTFM mesh, there is
a column of numbers under the symbol c (%), which stands for the percentage deviation
of the computed results from the reference solution.

With just 12 (8 + 4) strips, the proposed method gives accurate predictions, with the
maximum deviation from the reference solution less than 0.4%. Note that the deviation
becomes smaller for higher-mode frequencies. With 6 (4+ 2) strips, the maximum deviation
is less than 1.5%, which is better than that of the result obtained using 48 finite elements.
Even 3 (2+ I) strips can have an acceptable maximum deviation of 5.7%. On the other
hand, fewer finite elements would lead to poor accuracy in the predicted frequencies, as in
the case of 12 elements. Since the quadratic model (QM) of SDTFM already has enough
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precision, the more accurate cubic model (CM) is not necessary in this example. All these
indicate that SDTFM is useful for analysis of high-frequency dynamics of complex elastic
bodies.

Some observations from the numerical simulation are in order. If the strip width is
equal to the side length of finite elements. the SDTFM results have much higher precision
than those by FEM. This advantage is most obvious when the mesh is coarse or the stress
gradient is high. Among the three SDTFM models, the cubic interpolation model (CM)
has the highest precision. This model maintains continuity of strains and stresses across
nodal lines, and does not need averaging the strains and stresses of adjacent strips on their
mutual boundaries (nodal lines). If strain or stress discontinuity does exist across a nodal
line. however, the model should be carefully used. On the other hand, the linear interpolation
model (LM) and the quadratic interpolation model (QM) have discontinuity in strain and
stress across nodal lines. In this case, the strain and stress values on a nodal line are taken
as the average of those of the two adjacent strips on their mutual boundary, i.e., the nodal
line. The numerical results show that the difference between the stresses of the two adjacent
strips on their boundary nodal line is small for the quadratic model (QM), even when the
strip mesh is coarse.

6 DISCUSSION

Some important features of SDTFM can be clearly seen by comparing it with FEM,
series solution methods (Galerkin, Ritz and assumed-modes methods), and the finite strip
method. Figure 17 shows the different strategies of these methods in describing the response
of a 2-D rectangular region in the X- and Y-directions. The finite strip method can be
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viewed as a combination of FEM and series solution method. while the proposed SDTFM
is a combination of FEM and exact analytical solution approach.

Both series solution methods and the finite strip method adopt series of comparison
or admissible functions. which are usually selected on a problem-by-problem basis, and
may be difficult to find even for some simple regions. On top of that. since the number of
terms in a series has to be large enough to gain necessary accuracy, in general. there is no
one-to-one mapping between the coefficients in the series and the displacements of the
region at the pre-selected boundary nodes. Because of these. it is difficult for series solution
methods and the finite strip method to model multi-body branched regions with mixed
boundary conditions. like the one shown in Fig. 3(b). Of course, one may fix the number
of terms in the series so as to render subregions or strips being able to be assembled at
boundary nodes. Doing so, however. will change the original format of infinite series
solutions into finite element interpolation by continuous functions, which needs a lot more
subregions or much shorter strips. in order to maintain the same accuracy level.

The finite element method has no such a problem: as a rule, the number of terms in
the element interpolation functions always matches the number of the element nodal
parameters. Nevertheless. given nodes. a large number of nodal parameters may impose
too strong continuity on the mutual boundaries of elements. So, the accuracy of FEM is
usually achieved by highly dense meshes.

The proposed SDTFM is fundamentally different from series solution methods and
the finite strip method in three major aspects: (i) SDTFM gives exact closed-form solutions
(nodal line displacements) in the strip longitudinal direction; (ii) SDTFM does not need
to select particular functions for any given boundary conditions; and (iii) SDTFM uniquely
expresses the response of subregions by the displacements at their boundary nodes. While
only rectangular subregions are considered here. the strip distributed transfer function
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Table 2. Natural frequencies of an L-shaped elastic region

SDTFM SDTFM SDTFM FEM FEM
2+ I strips 4+ 2 strips 8 +4 strips 12 elements 48 elements FEM

------------------ 3.675
k (Vk £ (%j (Uk E(%j (Uk f (%j (1)" E(%) (ih G(%j elements

--------- ---------

2.3809 3.70 2.3285 1.42 2.3030 0.31 2.3375 1.81 2.3185 0.98 2.2959
2 5.7999 3.54 5.6453 0.77 5.6173 0.27 5.5395 -l.ll -5.6001 -0.03 5.6019
3 6.0142 0.76 5.9187 0.21 5.9187 0.21 5.9889 0.33 5.9763 0.12 5.9690
4 10.089 3.55 9.8402 0.99 9.7751 0.32 9.4712 -2.79 9.6937 -0.51 9.7434
5 11.943 3.12 11.641 0.51 11.591 0.08 11.343 -2.06 11.528 -0.46 11.582
6 14.624 5.67 13.959 0.87 13.856 0.12 13.275 -408 13.691 -1.07 13.839
7 15.033 5.04 14.419 0.75 14.324 0.08 14.009 2.12 14.232 -0.56 14.313
8 16.475 4.72 15.817 0.55 15.746 0.09 15.456 -1.75 15.703 -0.18 15.731
9 17.105 3.44 16.714 1.08 16.563 0.16 15.662 -5.29 16.398 -0.84 16.536

10 19.392 1.77 19.107 0.28 19.070 0.08 16.121 -15.4 18.112 -4.94 19.055

modeling is valid for elastic bodies of other shapes (Yang and Zhou, 1995). These features
enable SDTFM to synthesize elastic regions of complex geometry and boundary conditions.

As shown in the numerical examples, the proposed SDTFM delivers much more
accurate solutions than FEM. Two good reasons for this high accuracy of SDTFM are:
(a) exact, closed-form analytical solution for nodal line displacements; and (b) deter­
mination of strain/stress components by the state variable vector given in (20), without
differentiation of the nodal line displacements. Another advantage of SDTFM is that only
the unknown displacements at those inter-connecting nodes (see Fig. 3(a)) are needed in
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the global dynamic equilibrium equation (30). This automatic condensation, along with
modeling by subregions. leads to a minimum number of unknowns to be determined.

7. CONCLUSIONS

The strip distributed transfer function method has been presented for static and
dynamic analysis of two-dimensional elasticity problems. The thrust of the method is that
it is flexible in dealing complex elastic regions. and at the same time delivers highly accurate
solutions. By providing closed-form, semi-exact solutions, the proposed SDTFM is much
more accurate than the finite element method, especially in predicting high-gradient stresses
and high-frequency dynamics. Therefore, by SDTFM. tremendous data storage can be
saved, and real-time computation for large-scale elastic systems is realizable.

The proposed method does not depend on series expansion of strip displacement
functions, and selection of particular functions for specific boundary conditions. For an
elastic subregion with any given boundary conditions. the method finds the exact solution
of the dynamic equilibrium equation governing the nodal line displacements. Through use
of the strip distributed transfer functions. the response of a subregion can be systematically
represented by the displacements at its boundary nodes, just like in finite element analysis.
Furthermore, SDTFM does not need increased computer memory to deal with concentrated
loads. pointwise constraints, and abrupt changes in geometric and material properties.
Accordingly. SDTFM is more capable of synthesizing elastic regions of complex geometry
and boundary conditions than many methods that are based on continuous function
expansIOn.

While the current work is focused on analysis of 2-D elastic bodies composed of
rectangular subregions, the basic concepts of SDTFM presented in this paper are applicable
to places, shells, and membranes consisting of subregions of different shapes. and certainly
3-D elastic bodies. Further development of this method is under way (Zhou and Yang,
1995; Yang and Zhou, 1995: Yang and Park. 1995). It is believed that the semi-analytical
method proposed herein will become a useful tool for modeling and analysis of complex
flexible structures. and other distributed parameter systems.
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APPENDIX: STIFFNESS AND MASS MATRICES
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Cubic displacement interpolation model (CM)
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